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ABSTRACT
Knowledge bases such as Wikidata, DBpedia, or YAGO con-
tain millions of entities and facts. In some knowledge bases,
the correctness of these facts has been evaluated. However,
much less is known about their completeness, i.e., the pro-
portion of real facts that the knowledge bases cover. In this
work, we investigate different signals to identify the areas
where the knowledge base is complete. We show that we
can combine these signals in a rule mining approach, which
allows us to predict where facts may be missing. We also
show that completeness predictions can help other applica-
tions such as fact inference.
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1. INTRODUCTION
Motivation. Knowledge Bases (KBs) such as DBpedia [8],
NELL [1], Wikidata [18], the Google Knowledge Vault [3], or
YAGO [17] contain billions of machine-readable facts about
the world. They know for instance that Paris is the capi-
tal of France and that Barack Obama won the Nobel Peace
Prize. KBs have applications in information retrieval, ques-
tion answering, machine translation, and data maintenance,
among others.

However, the data quality of KBs is not always perfect.
Problems include false data, missing information, or schema
inconsistencies. Hence, many approaches aim to clean up er-
roneous information [19]. In contrast, the completeness (re-
call) of the KBs has remained relatively unexplored. While
we often know what proportion of the facts in the KB are
correct, we usually do not know what proportion of the facts
in the real world they cover.

For example, as of 2016, Wikidata knows the father of
only 2% of all people in the KB – even though in the real
world everyone has a father. DBpedia contains only 6 Di-
jkstra Prize winners – but in the real world there are 35.
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Likewise, according to YAGO, the average number of chil-
dren per person is 0.02. In general, between 69% and 99%
of instances in popular KBs lack at least one property that
other entities in the same class have [16, 10]. Thus, we know
that today’s KBs are highly incomplete, but we do not know
where the information is missing.

This unknown degree of completeness poses several prob-
lems [13]. First, users do not have any guarantee that a
query run against the KB yields all the results that match
the query in the real world. Second, the data providers
themselves may not know where the data is incomplete, and
thus cannot determine where to focus their efforts. If they
knew, e.g., which people are missing their alma mater, they
could focus on tracing these pieces of information and adding
them. Third, completeness information could help identify
wrong facts. If we knew, e.g., that people always have only
2 parents, then a KB that contains 3 parents for an individ-
ual has to be erroneous. Finally, completeness information
can be insightful on its own, to know which missing facts are
known to be wrong. This is useful, e.g., for machine learning
algorithms that require counter-examples.

Thus, it would be of tremendous use for both data
providers and data consumers if we could know where the in-
formation in the KB is complete. In the ideal case, we would
want to make what we call completeness assertions, which
say, e.g., This KB contains all children of Barack Obama.

Challenges. The main obstacle to establish such com-
pleteness assertions is the Open World Assumption (OWA),
which nearly all KBs make. The OWA says that if the KB
does not contain a certain piece of information, then this
information is not necessarily false – it may be true in the
real world, but absent from the KB. This means that ev-
ery part of the KB could be potentially incomplete. Fur-
thermore, today’s KBs mostly consist of subject-predicate-
object triples. These formalisms usually provide very limited
means to store negative information (if at all). For exam-
ple, YAGO says that Barack Obama is married to Michelle
Obama, but it does not say that Barack Obama is not (and
was never) married to any other woman. In fact, there is
not even a way that YAGO and similar KBs could express
this idea. The KBs are not just incomplete, but also, by
design, unable to provide any indications of completeness.

Contribution. In this paper, we make a first step towards
generating completeness information automatically. Our
goal is to determine automatically whether certain proper-
ties of certain objects are complete: whether a person has
more children in reality than in the KB, whether a per-
son graduated from a university in real life even though the
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KB does not know about it, or whether a person has more
spouses in reality than are known to the KB. More precisely:

• We conduct a systematic study of signals that can in-
dicate completeness of properties of objects in a KB.

• We show how completeness assertions can be learned
through a rule mining system, AMIE; we further show
how the necessary training data for AMIE can be ob-
tained easily through crowdsourcing.

• We find that completeness can be predicted for some
relations with up to 100% precision on real KBs
(YAGO and Wikidata).

• As a use case, we show that our completeness asser-
tions can increase the precision of rule mining.

This paper is structured as follows. We first discuss related
work in Section 2, and introduce preliminaries in Section 3.
We then present in Section 4 the different signals that we use
to predict completeness, and leverage them in Section 5 to
mine completeness rules with the AMIE system. Section 6
presents detailed evaluations of the signals in isolation and
in combination. We showcase in Section 7 an application of
completeness assertions, before concluding in Section 8.

2. RELATED WORK
Knowledge Bases. Many of today’s KBs provide estima-
tions of their precision. YAGO [17] was manually evaluated
and found to be 95% correct. NELL [1] is regularly checked
by humans for precision. Facts in the Knowledge Vault [3]
are annotated with an estimated precision. However, little
is known about the recall/completeness of these KBs. Of
course, larger sizes may indicate higher completeness, but
size is only a very coarse proxy for completeness.

Incompleteness Studies. Some studies have found that
KBs are indeed quite incomplete. For instance, a water-
marking study [16] reports that 69%–99% of instances in
popular KBs lack at least one property that other entities
in the same class have. Google found that 71% of people
in Freebase have no known place of birth, and 75% have no
known nationality [3]. This tells us that KBs are incom-
plete in general, but it does not tell which parts of the KB
are complete.

Manual Indicators. The Wikidata community maintains
lists that explain where information is still missing – e.g.,
a list of people without birth dates1. Also, Wikidata con-
tains no-value statements, which say that an empty relation
is complete for an entity [4]. An extension for Wikidata
allows contributors to manually add recall information [2].
However, these annotations are mostly provided manually:
our work aims at deducing such annotations automatically.

Partial Completeness Assumption. Some approaches
simply assume that KBs are complete in certain areas. For
instance, the AMIE project used the partial completeness
assumption (PCA) [5] (re-used as the local closed world as-
sumption in [3]). We discuss the PCA in detail in Section 4.

Rule Mining. Inductive Logic Programming and Rule
Mining approaches [7] find rules such as If a person lives in
a city, then their spouse lives most likely in the same city.

1
https://www.wikidata.org/wiki/Wikidata:Database reports/top

missing properties by number of sitelinks/P569

These rules can then be used to predict new information
(here: where the spouse lives). As a side effect, this proce-
dure determines where the KB is incomplete. However, such
approaches can only ever mine new facts between instances
that are already known to the KB. They cannot tell us that
a spouse is missing if that spouse is not in the KB. We will
show in our experiments how rule mining can benefit from
the techniques we develop in this paper.

Completeness Reasoning. On the database side, some
work has investigated how to combine completeness infor-
mation about parts of databases to deduce completeness an-
notations on query results [11, 9, 12]. However, this work
assumes that the KB has already been annotated with com-
pleteness assertions. Our goal, in contrast, is to generate
such assertions.

3. PRELIMINARIES
Knowledge Bases. In this paper, we target KBs in RDFS
format [14]. We assume that the reader is familiar with
RDFS. We write facts as r(s, o), where r is a relation, s is the
subject, and o is the object – as in president(Obama,USA).
We assume a fixed KB K, and thus write r(s, o) to mean
r(s, o) ∈ K.

Functionality. The functionality [15] of a relation r is de-
fined as:

fun(r) ··=
#x : ∃y : r(x, y)

#(x, y) : r(x, y)

where #α : A denotes the number of α that fulfill the con-
dition A. For relations such as placeOfBirth which are func-
tions, we have fun(r) = 1. For “quasi-functions” such as
isCitizenOf, fun(r) is close to 1. If r has many objects for a
subject, fun(r) is closer to 0.

Completeness. In line with work in databases [11, 13], we
define completeness via a hypothetical ideal KB K∗, which
contains all facts of the real world. A KB K is complete for
a query q, if q delivers the same results on K as on K∗. In
this paper, we focus on a particular type of queries, namely
those that ask for the objects of a given subject and relation.
Thus, a pair of an entity s and a relation r is complete in a
KB K, if {o : r(s, o) ∈ K} ⊇ {o : r(s, o) ∈ K∗}. For example,
a KB is complete for the subject Barack Obama and the
relation hasChild, if it contains both of Obama’s children.
If the KB is complete for a subject s and a relation r, we
make a completeness assertion of the form complete(s, r).
Our goal is to establish such completeness assertions.

In general, completeness assertions make less sense for re-
lations with low functionality. For example, it does not make
sense to ask a KB if it knows all citizens of France. It is more
sensible to ask whether the KB knows all nationalities of one
person. Therefore, we consider completeness primarily for
relations with high functionality. In particular, if a relation
has low functionality (such as countryHasCitizen), and its
inverse has high functionality (personHasNationality), then
we consider the inverse.

When a relation is incomplete for a subject, we could also
try to estimate how many objects are missing. This would
amount to a cardinality estimation. In this paper, however,
we focus on the simpler task of establishing completeness
assertions, and leave cardinality estimations for future work.

Completeness Considerations. The notion of complete-
ness is not well-defined for all relations [13]. Take, e.g., the
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relation hasHobby. It is not always clear whether an activity
counts as a hobby or not. Thus, it is difficult to establish
whether a KB is complete on the hobbies of a certain person.
Even for seemingly well-defined relations such as hasOfficial-
Language, completeness is not easy to establish: a country
may have de facto official languages that are not legally rec-
ognized (e.g., the US); languages that are official in some
regions but not in the country (e.g., India); or an official
language that is not a spoken language (e.g., New Zealand).
In this paper, we manually selected relations for which com-
pleteness is well-defined, and concentrate on these.

Completeness Oracles. A completeness oracle tries to
guess whether a given relation is complete for a given sub-
ject in the fixed KB K. Technically, a completeness oracle is
a binary relation on entities and relations that holds when-
ever the oracle predicts that a given subject is complete
for a given relation. The Partial Completeness Assumption
(PCA) is an example of a simple completeness oracle. It pre-
dicts completeness for a subject s and a relation r if there
exists an object x with r(s, x). For instance, if in a KB,
Barack Obama has one child, the PCA oracle will (wrongly)
state that Barack Obama is complete for the relation has-
Child, i.e., pca(BarackObama, hasChild) will be true.

The precision and recall of an oracle o are defined as fol-
lows, where complete denotes the completeness assertions
that are true relative to the ideal KB K∗:

precision(o) ··=
#(e, r) : o(e, r) ∧ complete(e, r)

#(e, r) : o(e, r)

recall(o) ··=
#(e, r) : o(e, r) ∧ complete(e, r)

#(e, r) : complete(e, r)

The F1 measure is defined as usual from precision and recall.

4. COMPLETENESS ORACLES
We now present various completeness oracles, of which we

study two kinds: simple oracles and parameterized oracles.

4.1 Simple Oracles
Closed World Assumption. The Closed World Assump-
tion (CWA) assumes that any fact that is not in the KB
does not hold in the real world. That is, the CWA assumes
that the entire KB is complete. In general, the CWA is in-
compatible with the philosophy of the Semantic Web. Still,
the CWA may be suitable under certain conditions. For
instance, if a person is not known to be the president of
any country, then most likely the person is indeed not the
president of any country. Formally, the CWA completeness
oracle is simply defined as:

cwa(s, r) ··= true

Partial Closed World Assumption (PCA). The
PCA [6] is an oracle that has proven useful for rule min-
ing [3, 5]. Under the PCA, a subject-relation pair s, r is
considered complete if there is at least an object o with
r(s, o). In other words, we assume that, if the KB knows
some r-values for s, then it knows all its values. The PCA is
more cautious at predicting completeness than the CWA: it
predicts the completeness only if objects are already known.
This implies that the PCA makes predictions only for those
entities that have an object for the relationship, and remains

silent otherwise. For instance, according to the CWA, a per-
son that has no nationality in the KB has no nationality in
reality, but the PCA will not make such claims. Formally,
the PCA oracle is:

pca(s, r) ··= ∃o : r(s, o)

The PCA is especially well suited for functional relations,
where an entity can have at most one object. Indeed, if an
entity has some object for a functional relation, then it is
complete.

Cardinality. A more cautious oracle than the PCA is the
cardinality oracle. For an integer value k, the oracle says
that a subject s is complete for a relation r if s has at least
k different objects for r. Formally:

cardk(s, r) ··= #(o : r(s, o)) ≥ k

This oracle subsumes the CWA and PCA: card0 is cwa, and
card1 is pca. Other values for k can be useful; for instance,
card2 can be effectively used as a predictor for the hasParent
relation. In our experience, however, larger values of k are
rarely useful, and hence we categorize this oracle as a simple
oracle.

Popularity. The previous oracles have looked at properties
of entities in isolation. We can also look at the entities in
the context of the entire KB. For example, we can hypoth-
esize that entities which are popular (by some measure) are
more likely to be complete. For example, we expect that
Wikipedia-based KBs are more complete for famous entities
such as Albert Einstein than for entities that have only stub-
articles. For a Boolean measure pop that indicates whether
an entity is popular or not, we can define this completeness
oracle as

popularitypop(s, r) ··= pop(s)

No Change. So far, we have only looked at a single snap-
shot of the KB. An alternative is to study how the KB
changes over time. If the objects of a particular subject
do not change, then this may suggest that the subject is
complete. Given a Boolean measure of change chg , where
chg(s, r) indicates whether the set of objects for entity s and
relation r has changed over time, we define:

nochangechg(s, r) ··= ¬chg(s, r)

4.2 Parameterized Oracles
We now move on to the study of oracles that depend on

parameters that are difficult to determine upfront, such as
classes and relations.

Star Patterns. Instead of trying to estimate the com-
pleteness for a relation by looking only at that relation, we
can look at facts involving other relations. For example,
if someone has won a Nobel Prize, then we probably know
their alma mater. Formally, we consider “star-shaped pat-
terns” of certain relations around the subject, and predict
completeness if they are all present:

starr1...rn(s, r) ··= ∀i ∈ {1, . . . , n} : ∃o : ri(s, o)

Class Information. In some circumstances, the class to
which an entity belongs can indicate completeness with re-
spect to some relations. For example, the instances of the
class LivingPeople should not have a death date. If we as-
sume that the KB is correct, this implies that any instance



of that class is complete with respect to that relation. For-
mally, the class-based oracle for a class expression c on our
KB K is

classc(s, r) ··= type(s, c) ∈ K

We conduct our study with two types of class expressions:
plain class names such as LivingPeople and negated class
expressions of the form t̂∧¬t where t is a subclass of t̂, like
in Person ∧ ¬Adult .

Others. Many other completeness oracles can be envisaged.
For example, we could extract information from the Web to
find out whether we can find more objects; we could ask a
crowd of users for more objects; we could compare two KBs
to see if one contains more information than the other; or we
could check against external sources. In this paper, however,
we limit ourselves to a single source, and leave other such
approaches to future work.

5. LEARNING COMPLETENESS

5.1 Combining Oracles
Some completeness oracles cannot be used out-of-the-box.

For example, to use the star oracle and the class oracle, we
must try out a huge number of possible parameters (YAGO,
e.g., has 200,000 classes). Furthermore, oracles may work
best in combination: in some cases, the PCA may be the
best oracle, while in others, the cardinality oracle may be
better. Our goal is thus to generalize and learn more com-
plex completeness oracles from the simple ones that we pre-
sented.

Towards this goal, we assume that we already have a cer-
tain number of gold standard completeness assertions as
training data. We show in Section 6 how to obtain such
assertions from a crowd of users with good precision. Based
on these gold standard annotations, we can then learn com-
binations and parametrizations of the oracles. To this end,
we adapt the AMIE rule mining approach [6, 5].

5.2 AMIE
AMIE. AMIE [6, 5] is an inductive logic programming sys-
tem that is particularly geared towards KBs. Its source code
is available online2. Given a KB, AMIE finds Horn rules such
as marriedTo(X,Y ) ∧ livesIn(X,Z)⇒ livesIn(Y,Z). These
rules do not hold in all cases, and therefore come with a
confidence value.

In AMIE, an atom is a binary fact where at least one of
the arguments is a variable – as in livesIn(Obama, Y ). We
write the variables of atoms as capital letters. A rule is
an expression of the form B ⇒ H, where B is the body (a
conjunction of atoms B1 ∧ · · · ∧ Bn), and H is the head (a
single atom). The support of a rule is the number of different
instantiations for the head variables that satisfy all atoms of
the rule in the KB. If H = r(x, y), the support follows the
formula:

supp(B ⇒ r(x, y)) = #(x, y) : B ∧ r(x, y)

Rule Mining. AMIE starts with rules with an empty body
(i.e., with rules of the form “⇒ r(X,Y )”), and refines them

2http://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/
amie/

using a number of operators. Each of the operators takes a
rule as input, and produces a set of refined rules as output,
by adding one particular type of atom to the body of the
rule:

• Add Dangling Atom: A dangling atom joins the rule
on an existing variable and introduces a new variable in
the other position.

• Add Closing Atom: A closing atom is an atom that
joins on two existing variables in the rule.

• Add Instantiated Atom: An instantiated atom has
one instantiated argument (a constant/entity) and joins
with the rule on the other argument.

The operators always produce rules with less support than
the original rule. AMIE applies them iteratively to find all
rules above a given support threshold.

5.3 Enhancing AMIE
Our goal is now to teach AMIE to learn rules such as

moreThan1(X, hasParent)⇒ complete(X, hasParent)

This rule says that if X has more than one object for the
relation hasParent, then X is probably complete on that
relation. For this purpose, we assume that we have train-
ing data, i.e. known assertions of the form complete(x, r)
and incomplete(x, r). We show in Section 6 how to obtain
such training data from the crowd. Then, all of the com-
pleteness oracles (Section 4) have to be translated into the
AMIE framework. For this purpose, we define the following
new types of atoms :

• complete(x, r), incomplete(x, r): These assertions
represent our training data. We add them to the KB.

• isPopular(x): The popularity oracle relies on an ex-
ternal measure pop of entity popularity. We considered
three such measures: (i) number of facts for that entity,
(ii) length of the article in the English Wikipedia, and (iii)
number of ingoing links to the Wikipedia page. Manual
inspection revealed that (i) correlated best with complete-
ness. Thus, we add isPopular(x) to the KB if x is among
the 5% entities with the most facts in the KB.

• hasNotChanged(x, r): Given an older version of the
KB, we add the fact hasNotChanged(x, r) to the new KB
if x has exactly the same r-objects in the new KB as in the
old KB. In our experiments, we applied this to the YAGO
KB, for which we used the oldest version (YAGO1) and
the newest one (YAGO3).

• notype(x, t): The notype(x, t) atom states that an entity
is not an instance of class t. Such atoms are always used in
conjunction with instantiated atoms of the form type(x, t̂)
where t̂ is a super-class of t. These types of atoms allow
us to integrate class expressions of the form t̂ ∧ ¬t as
defined for the class oracle.

• lessThann(x, r), moreThann(x, r): An atom of the
form lessThann(x, r) with n > 0 is satisfied if x has less
than n objects for relation r in the KB. The moreThann

atom is defined analogously. Such atoms allow AMIE to
learn the cardinality oracles we introduced in Section 4.1.
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We let AMIE mine only rules with heads of the form c(X, r),
where c is either complete or incomplete, r is a relation, and
X is a variable. We represent unary atoms p(x) as p(x, true)
since AMIE supports only with binary atoms. For perfor-
mance reasons, we enable the“Add Instantiated Atom”oper-
ator only for isPopular(x), hasNotChanged(x, r), type(x, t)
and notype(x, t). AMIE’s rule language enforces closed Horn
rules. These are rules where each variable is closed, i.e., it
appears in at least two atoms in the rule. We drop this con-
straint for variables in the body of rules in order to allow for
rules with star patterns like for example:

wonPrize(x, z)∧politicianOf (x,w)⇒ complete(x, citizenOf )

Still, we do not allow non-closed variables in the new types of
atoms, e.g., isPopular and hasNotChanged . We also forbid
atoms with the relation r in the body of the rules. Further-
more, we define five additional mining operators to capture
the oracles that we defined:

• Add Type: Given a rule B ⇒ c(X, r), this operator
adds an atom of the form type(X, t), where t is the domain
of r. The operator is applied only if the rule does not yet
contain a type atom.

• Specialize Type: Given a rule type(X, t)∧B ⇒ c(X, r),
this operator yields a new rule type(X, t′) ∧B ⇒ c(X, r)
where t′ is a subclass of t.

• Add Negated Type: Given a rule type(X, t) ∧ B ⇒
c(X, r), this operator produces a new rule notype(X, t′)∧
type(X, t) ∧B ⇒ c(X, r), where t′ is a subclass of t.

• Add Cardinality Constraint: Given a rule B ⇒
c(X, r), this operator adds an atom of the form
moreThan0(X, r) or lessThank(X, r), where k is the high-
est number of objects seen for any subject in the rela-
tion r.

• Tighten Cardinality Constraint: Given a rule
lessThank(X, r) ∧ B ⇒ c(X, r), this operator replaces
k by the largest value k′ (with k′ < k) that decreases
the support of the original rule. Likewise, given a rule
moreThank(X, r) ∧ B ⇒ c(X, r), we replace k by the
smallest value k′ (> k) that decreases the support. For
example, given the rule moreThan0(X, hasParent) ⇒
complete(X, hasParent), the operator will replace 0 by 1.

Learning. With our supplementary atoms and new mining
operators, the actual learning of completeness rules works
exactly as the mining of normal rules in [6, 5]. We exemplify
this by showing how AMIE mines the following rules:

1. notype(X,Adult)∧type(X,Person)⇒ complete(X, hasChild)

2. lessThan1 (X, isCitizenOf )⇒ incomplete(X, isCitizenOf )

The first rule says that if a person is not an adult,
then the KB is complete for the children of that person
(most likely zero). To mine this rule, AMIE starts with
the simple rule “⇒ complete(X, hasChild)” and applies all
the mining operators described in Sections 5.2 and 5.3.
Among the different new rules generated by this step, the
“Add Type” operator produces the rule type(X,Person) ⇒
complete(X, hasChild). In the next step, the operator “Add
Negated Type”produces new rules of the form notype(X, t)∧

type(X,Person)⇒ complete(X, hasChild), where t is a sub-
class of Person. In particular, for t = Adult , we obtain our
example rule.

The second rule states that if a person has less than
one citizenship, then the KB is incomplete in the citizen-
ship relation for that person. AMIE starts with the rule
⇒ incomplete(X, isCitizenOf ), and applies the “Add Cardi-
nality Constraint”. Assuming that in the KB nobody has
more than 3 nationalities, the operator produces the rule
lessThan3 (X, isCitizenOf ) ⇒ incomplete(X, isCitizenOf ).
This rule has support s. In a later step, AMIE tries
to tighten the cardinality constraint by means of the
“Tighten Cardinality Constraint” operator. The opera-
tor searches for the closest k < 3 such that the sup-
port of the new rule drops. If the number of incom-
plete people with less than 2 nationalities is smaller than
s, the system will chose k = 2 and the rule becomes
lessThan2 (X, isCitizenOf ) ⇒ incomplete(X, isCitizenOf ).
An additional call to the operator “Tighten Car-
dinality Constraint” on the new rule will produce
lessThan1 (X, isCitizenOf ) ⇒ incomplete(X, isCitizenOf ).
We remark that depending on the data distribution, AMIE
may need a single call to the “Tighten Cardinality Con-
straint” to produce the target rule, i.e., it may skip the in-
termediate step where k = 2.

AMIE as completeness oracle. AMIE will learn rules
that predict completeness as well as rules that predict in-
completeness. For the first type of rules, she uses the
complete(x, r) atoms of the training data as examples, and
the incomplete(x, r) atoms as counter-examples. For the
second type of rules, the roles are reversed. This implies
that confidence for completeness and incompleteness rules
follows the formula:

conf(B ⇒ c(X, r)) =
supp(B ⇒ c(X, r))

supp(B ⇒ c(X, r)) + supp(B ⇒ ¬c(X, r))

where c ∈ {complete, incomplete}.
Once the rules have been learned, we can define a new

completeness oracle, the AMIE oracle. For a given en-
tity e and a relation r, the AMIE oracle checks whether
any of the learnt rules predicts complete(e, r). If so, and if
there is no rule with higher or equal confidence that predicts
incomplete(e, r), the oracle returns true. If there is a rule
with equal confidence that predicts incomplete(e, r), the or-
acle returns true if the support of the completeness rule is
higher. In all other cases, the oracle returns false.

By restricting AMIE to only star atoms or only class
atoms, we can produce a Star oracle and a Class oracle,
respectively, analogously to the AMIE oracle.

6. EXPERIMENTS

6.1 Setup
Knowledge bases. Our goal is to measure the precision
and recall of the completeness oracles on real data. We con-
ducted our study on two KBs: YAGO3, released in Septem-
ber 2015, and a dump of Wikidata of December 2015. For
both datasets, we used the facts between entities, the facts
with literal object values (except for the relation rdfs:label)
and the instance information. These choices leave us with a
KB of 89M facts (78M type statements) for YAGO, and a



dateOfDeath(X, Y) ∧ lessThan1(X, placeOfDeath) ⇒ incomplete(X, placeOfDeath)
IMDbId(X, Y) ∧ producer(X, Z) ⇒ complete(X, director)
notype(X, Adult) ∧ type(X, Person) ⇒ complete(X, hasChild)
lessThan2(X, hasParent) ⇒ incomplete(X, hasParent)

Table 1: Example rules that AMIE learned (2 on Wikidata, 2 on YAGO)

KB of 15M facts (3.6M type statements) for Wikidata. We
studied completeness on a set of relations covering a large
variety of cases. For one type of relations, basically every
entity of the domain has to have exactly one object: has-
Gender, wasBornIn in YAGO; sex or gender (P21), mother
(P25), father (P22), place of birth (P19) in Wikidata. For
other relations, entities do not need to have an object, but
can have at most one: diedIn in YAGO; place of death (P20)
in Wikidata. Again others usually have one object, but
can have more: isCitizenOf and director(Movie, Person) in
YAGO; country of citizenship (P27) and director (P57) in
Wikidata. In the most general case, a subject can have zero,
one, or several objects: hasChild, graduatedFrom, isConnect-
edTo(Airport, Airport), and isMarriedTo3 in YAGO; child
(P40), alma mater4 (P69), brother, and spouse (P26) in
Wikidata. One relation has to have 2 objects: hasParent5

in YAGO. Our relations cover people, movies, and locations.

Ground Truth. In order to evaluate our completeness or-
acles, we need a set of completeness assertions and incom-
pleteness assertions as a gold standard. For some relations,
we could generate this gold standard automatically. Namely,
for the relations where every subject has to have exactly one
object, we have complete(s, r) iff ∃o : r(s, o). For the rela-
tions where every subject must have at least one object,
we can directly label as incomplete all subjects without a
value. For the relations with at most one object, all subjects
with one object are considered complete. For the relation
isConnectedTo, we used the OpenFlights6 dataset as ground
truth, which we assumed to be complete for all airports in
this dataset (identified by their IATA code). However, due
to data inaccuracies, in some cases YAGO knew more flights
than OpenFlights: we discarded those airports.

Crowdsourcing. For the remaining relations, we used
crowdsourcing to obtain ground truth data. Given an entity,
a relation, and the objects known in the KB, we asked crowd
workers whether they could find any additional objects on
the Web. If they could, we labelled the entity-relation pair
as incomplete, otherwise as complete. To make the task
well-defined and manageable, we asked workers to look only
at a set of given Web pages. We manually defined queries
for each relation (e.g., “x died” for diedIn(x, y) or “x child”
for hasChild(x, y)), and then gave workers the first 4 URLs
retrieved using the Bing search API. We used the Crowd-
flower platform7 for crowdsourcing, and paid 1 cent per an-
swer. For every relation, we annotated 200 random entities.
For each entity, we collected 3 opinions.

Quality Control. To monitor quality, we manually gen-

3Despite the name, this relation captures also past spouses.
4We use the same semantics as in YAGO: places a person
graduated from.
5This is how we call the inverse of hasChild in YAGO.
6http://openflights.org/data.html
7https://www.crowdflower.com

erated 20–29 test questions for each relation. Annotators
had to pass a qualification test of 10 questions with at least
80% correct answers; further, the remaining test questions
were mixed with the data, and annotators had to maintain
80% correctness while working. About a quarter of annota-
tors failed at the initial tests, and about 5% fell below the
correctness threshold while working. Their answers were dis-
carded. Furthermore, we used only the annotations where
all 3 answers were unanimous. These make up 55% of the
annotations.

Sampling. In our experiments with AMIE, we use 80%
of our gold standard for training, and the rest for testing.
This gold standard was produced by randomly picking 200
entities in the domain of the studied relations. We call this
sample uniform. The uniform sample is not always useful.
For example, only 1% of people have a citizenship in YAGO.
Thus, in a sample of 200 people, we may expect a citizenship
for only 2 of them. This is too few to learn a rule. There-
fore, for relations where less than 10% of the subjects have
an object we construct a biased sample instead. Instead of
choosing 200 entities randomly, we choose 100 entities ran-
domly among those that have an object, and 100 among
those that do not. In our experiments, we mark the rela-
tions where we used the biased sample. For the calculation
of precision and recall, we carried out a de-biasing step. This
means that the values we report reflect the true population
of entities in the KBs.

6.2 Basic Completeness Oracles
Experiment. Our completeness oracles from Section 4 try
to guess whether a pair of a subject and a relation is com-
plete. We considered the subject–relation pairs where we
had a gold standard, and computed precision and recall val-
ues as described in Section 3. Table 2 shows the results for
the oracles for YAGO3, and Table 4 for Wikidata. Table 3
and Table 5 show the corresponding F1 measures.

Cardinality Oracles. The first column in the tables shows
the CWA. It trivially achieves a recall of 100%: for all pairs
that are complete in reality, it makes a correct prediction.
However, its precision is lower. This precision value corre-
sponds to the actual completeness of the KB with respect to
the real world. We see, e.g., that YAGO is complete for the
death place for 44% of the people. This means that these
people are either alive, or dead with a known death place
in YAGO. We also observe that Wikidata is generally more
complete than YAGO.

The next oracle is the PCA. It achieves 100% precision for
all functional relations: if a subject has an object, the PCA
rightly assumes that the subject is complete. For quasi-
functions, such as isCitizenOf, the PCA still performs de-
cently, failing only for people with several nationalities. The
PCA has a recall of 100% for relations that are mandatory
(such as hasGender): whenever this relation is complete in

http://openflights.org/data.html
https://www.crowdflower.com


the gold standard, the PCA indeed predicts it. For the other
relations, the PCA has a much lower precision and recall.

The card2 oracle has a much lower recall. We could not
compute it for relations where the sample did not contain
any entity with sufficiently many objects. This oracle basi-
cally makes sense only for the hasParent relation, where it
performs perfectly. As card3 behaves worse that card2 on
both datasets, we omitted it for space reasons.

Popularity Oracle. The fourth column shows the popular-
ity oracle. The oracle was not computed for isConnectedTo
due to noise in the data. The popularity oracle generally
has a low recall, because there are not many popular enti-
ties. Its precision is generally good, indicating that popular
entities (those that have many facts in general) are indeed
more complete than unpopular ones. However, even popular
entities are incomplete for parents and citizenship in YAGO,
and for parents in Wikidata.

NoChange Oracle. The next column shows the NoChange
oracle on YAGO, for those relations that exist in both
YAGO1 and YAGO3. It has a very low recall, indicating
that most entities did indeed change their objects over time
(they most likely gained more objects). The precision is
decent, but not extraordinary.

6.3 Learned Completeness Oracles
Learning. We took 80% of our gold standard to train
our modified AMIE approach (Section 5) with 4-fold cross-
validation. The training phase measures the performance
of AMIE at different configurations, i.e., different values for
the support and confidence thresholds. We tested values
for support in the range from 10 to 100 entities (in steps of
10), while confidence was tested on values from 0.3 to 1.0
(in steps of 0.1). We report the best configuration in terms
of F1 measure for each relation, and use it to measure per-
formance in the testing set (the remaining 20% of the gold
standard). Training took 44 hours on YAGO, and 4 hours in
Wikidata. This difference is mainly due to the much larger
type hierarchy in YAGO (78M type assertions as opposed to
3.6M). Table 1 shows some of the rules that AMIE learned.
The first rule says that a person who has a date of death,
but no place of death, is incomplete for the place of death.
In the second rule, the IMDb id acts as a substitute for the
type movie, which is not always consistently used in Wiki-
data. Thus, the rule basically says that if a movie has a
producer, then it is most likely complete on the director.
Many of our rules are specific to our dataset. Others (such
as the first) may apply to different datasets. We leave the
study of cross-dataset rules for future work, and concentrate
on one dataset here.

Results. After the rules have been learned, making the ac-
tual oracle predictions on the gold standard takes only sec-
onds. We evaluated these predictions against the remaining
20% of our gold standard, and report the precision, recall,
and F1 values in the three last columns of Tables 2 and 3
for YAGO, and in Tables 4 and 5 for Wikidata.

For the star oracle, we used a star size of n = 1 for YAGO
and n = 3 for Wikidata. We observe that this oracle can
improve the F1 value for the isMarriedTo relation. The
class oracle, likewise, performs well for certain relations. In
particular, the oracle learned that the YAGO class Living-
People means that the diedIn relation must be complete,
boosting F1 from 60% to 99%. This shows that parametrized

oracles can be useful.
In general, the oracles complement each other. Only the

complete AMIE approach can nearly always perform best.
This is because AMIE learns the strengths of the individ-
ual oracles, and combines them as is most useful. For
functional relations, AMIE learned a rule that mimics the
PCA, predicting completeness for a subject whenever one
object is present: moreThan0(X, r) ⇒ complete(X, r). For
diedIn, AMIE learned a rule that mimics the Class oracle:
type(X,LivingPeople) ⇒ complete(X, diedIn). In this way,
our oracle achieves an F1-measure of over 90% for more
than half of the relations – on both YAGO and Wikidata.
When such relation-specific rules are not available, AMIE
learns the CWA. This is the case for difficult relations such
as brother, graduatedFrom or isConnectedTo. In particular,
AMIE learns the CWA in rules of the form

type(X, domain(r))⇒ complete(X, r)

All in all, our results show that it is indeed possible to
predict completeness with very good precision and recall for
a large number of relations. We can predict whether peo-
ple are alive, whether they graduated, or whether they have
siblings – all by just looking at the incomplete KB. Only
for hasChild and marriedTo, our oracles perform less well.
However, guessing whether someone is married, or whether
someone has children, is close to impossible even for a hu-
man.

7. APPLICATION
Having studied the experimental performance of our ap-

proach, we now show how the completeness assertions that
we generate can prove useful in applications. We focus on
fact prediction, which we first define.

Goal. Rule mining is generally used to find arbitrary rules
in a KB, not just completeness rules. We can use these
rules to perform fact prediction, i.e., predict which person
lives where, or which city is located in which country [6, 5].
We can compare the predictions to the real world and thus
measure the precision of the approach.

We will show how the precision of fact prediction can
be improved by completeness assertions. For this purpose,
we use the standard AMIE approach to make fact predic-
tions, but we use the completeness assertions to filter out
some of them: we filter out predicted facts r(s, o) whenever
complete(s, r) holds. For example, if fact prediction says
that a person has a parent, but the KB already knows 2
parents, then we discard the prediction.

Setup. We followed the experimental setup from [5] and
ran the standard AMIE system on YAGO3, using the ob-
tained rules to infer new facts. Each rule (and thus each
prediction) comes with a confidence score. We grouped the
predictions in buckets by confidence score, as in [5]. For each
bucket, we resorted to crowd workers to evaluate the preci-
sion of the predictions on a sample of 100 facts. The lower
line in Figure 1 shows the number of predictions versus the
cumulative precision estimated on the samples. Each data
point corresponds to a bucket of predictions, i.e., the first
point on the left corresponds to the predictions with con-
fidence score between 0.9 and 1, the second point to those
with confidence between 0.8 and 0.9, etc. In the second
phase of the experiment, we used completeness assertions to
filter out predictions. We produced completeness assertions



Relation CWA PCA card2 Popularity No change Star Classes AMIE
Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

diedIn 43% 100% 100% 13% — — 97% 2% 74% 8% 100% 33% 100% 97% 96% 96%
directed 25% 100% 93% 100% 72% 11% 91% 3% 90% 59% 0% 0% 0% 0% 100% 100%
graduatedFrom 80% 100% 70% 2% 79% 1% 89% 1% 82% 6% 84% 94% 85% 100% 77% 100%
hasChild 55% 100% 36% 1% 41% 0% 78% 1% 70% 7% 83% 26% 63% 100% 65% 100%
hasGender 64% 100% 100% 100% — — 98% 1% — — 92% 81% 91% 100% 100% 100%
hasParent* 0% 100% 37% 100% 100% 100% — — — — 0% 0% 0% 0% 100% 100%
isCitizenOf* 2% 100% 97% 100% 93% 6% 2% 1% 2% 7% 6% 33% 2% 53% 100% 100%
isConnectedTo 77% 100% 67% 23% 60% 12% — — — — 77% 62% 79% 100% 81% 100%
isMarriedTo* 38% 100% 84% 4% 92% 0% 66% 1% 51% 7% 25% 74% 40% 100% 29% 100%
wasBornIn 16% 100% 100% 100% — — 73% 3% 33% 5% 0% 0% 0% 0% 100% 100%

Table 2: Precision and recall of all completeness oracles on YAGO3. Relations with a biased sample are marked with *.

Relation CWA PCA card2 Popularity No change Star Class AMIE

diedIn 60% 22% — 4% 15% 50% 99% 96%
directed 40% 96% 19% 7% 71% 0% 0% 100%
graduatedFrom 89% 4% 2% 2% 10% 89% 92% 87%
hasChild 71% 1% 1% 2% 13% 40% 78% 78%
hasGender 78% 100% — 2% — 86% 95% 100%
hasParent* 1% 54% 100% — — 0% 0% 100%
isCitizenOf* 4% 98% 11% 1% 4% 10% 5% 100%
isConnectedTo 87% 34% 19% — — 68% 88% 89%
isMarriedTo* 55% 7% 0% 3% 12% 37% 57% 46%
wasBornIn 28% 100% — 5% 8% 0% 0% 100%

Table 3: F1 measure of all completeness oracles on YAGO3. Relations with a biased sample are marked with *.

Relation CWA PCA card2 Popularity Star Classes AMIE
Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

alma mater 82% 100% 80% 8% 95% 2% 57% 1% 76% 100% 76% 100% 76% 100%
brother 86% 100% 57% 0% — — 61% 1% 92% 96% 92% 100% 92% 100%
child 54% 100% 15% 1% — — 25% 0% 73% 86% 58% 95% 79% 68%
country of citizenship* 27% 100% 95% 100% 100% 5% 38% 1% 0% 0% 0% 0% 96% 100%
director 68% 100% 100% 100% — — 95% 1% 89% 100% 85% 94% 100% 100%
father* 3% 100% 100% 100% 100% 3% 16% 6% 100% 80% 4% 82% 100% 100%
mother* 1% 100% 100% 100% 100% 1% 12% 9% 52% 96% 2% 86% 100% 100%
place of birth 36% 100% 100% 100% 100% 4% 90% 3% 86% 41% 0% 0% 100% 100%
place of death 81% 100% 100% 21% 100% 1% 97% 1% 77% 87% 77% 87% 93% 100%
sex or gender 69% 100% 100% 100% 100% 3% 96% 1% 87% 98% 85% 97% 100% 100%
spouse* 40% 100% 88% 4% — — 29% 1% 38% 99% 37% 99% 38% 100%

Table 4: Precision and recall of all completeness oracles on Wikidata. Relations with a biased sample are marked with *.

as in Section 6.3, by training AMIE with cross-validation on
our entire set of gold standard completeness assertions. The
upper line in Figure 1 shows the cumulative precision and
number of predictions for each bucket after filtering.

Results. As we can observe, the filtering could successfully
prune all wrong predictions. The remaining predictions have
a precision of 100%. This high precision has to be taken with
a grain of salt: the remaining predictions are mainly about
citizenship, which is guessed from the place of residence or
place of birth. The completeness assertions filter out any
predictions that try to assign a second citizenship to a per-
son, and thus drastically increase the precision. However,
there are also a few other relations among the predictions.
These are, e.g., the death place, or the alma mater (guessed
from the workplace of the academic advisor).

This precision comes at a price. In total, AMIE made
1.05M predictions. Of these, 400K were correct. From these,

the filtering incorrectly removed 110K. Thus, the filtering
removes roughly 25% of the correct predictions as a side-
effect. Still, we believe that our experiments make the case
that completeness assertions can significantly improve the
performance of fact prediction.

8. CONCLUSION
To the best of our knowledge, our work is the first sys-

tematic study of the problem of completeness in knowledge
bases. Completeness is an important dimension of qual-
ity, which is orthogonal to the dimension of correctness,
and which has so far received less attention. In our pa-
per, we have defined and analyzed a range of simple and
parametrized completeness oracles. We have also shown how
to combine these oracles into more complex oracles by rule
mining. Our experiments on YAGO and Wikidata prove
that completeness can indeed be predicted with high preci-



Relation CWA PCA card2 Popularity Star Class AMIE

alma mater 90% 14% 5% 1% 87% 87% 87%
brother 93% 1% — 1% 94% 96% 96%
child 70% 1% — 1% 79% 72% 73%
country of citizenship* 42% 97% 10% 3% 0% 0% 98%
director 81% 100% — 3% 94% 89% 100%
father* 5% 100% 6% 9% 89% 8% 100%
mother* 3% 100% 3% 10% 67%* 5% 100%
place of birth 53% 100% 7% 5% 55% 0% 100%
place of death 89% 35% 1% 2% 81% 81% 96%
sex or gender 81% 100% 6% 3% 92% 91% 100%
spouse* 57% 7% — 1% 54% 54% 55%

Table 5: F1 measure of all completeness oracles on Wikidata. Relations with a biased sample are marked with *.
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Figure 1: Precision of fact prediction

sion for many relations. These completeness estimations can
then be used to improve fact prediction to 100% precision
in specific cases.

We hope that our work can lead to new research avenues,
aiming to design knowledge bases that are not only highly
accurate, but also highly complete. The experimental re-
sults of this paper are available at http://luisgalarraga.de/
completeness-in-kbs.
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[5] L. Galárraga, C. Teflioudi, K. Hose, and F. Suchanek.
Fast rule mining in ontological knowledge bases with
AMIE+. VLDB Journal, 2015.
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